SENTIMENT ANALYSIS ON ARTIFICIAL INTELLIGENCE TECHNOLOGY USING NAIVE BAYES CLASSIFIER

Authors

  • Lintang Dwi Cahya Universitas Teknologi Yogyakarta
  • Adityo Permana Wibowo Universitas Teknologi Yogyakarta

DOI:

https://doi.org/10.35450/jip.v12i03.637

Keywords:

Artificial Intelligence, Naïve Bayes Classifier, Public Opinion, Sentiment Analysis, Text Mining

Abstract

The advancement of Artificial Intelligence (AI) technology has significantly impacted various aspects of life. However, these technological developments often elicit diverse responses from the public, including enthusiasm and concern. This study aims to analyze public sentiment toward AI developments using the Naive Bayes Classifier algorithm. The research collected AI-related tweets through data crawling, preprocessing, sentiment labeling, and feature extraction using TF-IDF. To address the class imbalance in the data, the Synthetic Minority Over-sampling Technique (SMOTE) was applied. The Naive Bayes Classifier model was then used to classify public sentiment into positive, negative, and neutral categories. Evaluation results indicate that the Naive Bayes Classifier achieved an overall accuracy of 70%, with a precision of 72%, recall of 70%, and F1-score of 71%. Although the model is relatively effective in identifying positive sentiments, challenges remain in distinguishing negative and neutral sentiments accurately. Factors affecting model performance, such as data preprocessing quality and limited dataset diversity, are discussed as areas for improvement in future research

Downloads

Download data is not yet available.

References

Aggarwal, C. C. (2015). Data Mining. Springer International Publishing. https://doi.org/10.1007/978-3-319-14142-8
Aydogan, E., & Akcayol, M. A. (2016). A Comprehensive Survey for Sentiment Analysis Tasks Using Machine Learning Techniques. IEEE.
Bird, S., Klein, E., & Edward Loper. (2009). Natural Language Processing with Python.
Chawla, N. V, Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. In Journal of Artificial Intelligence Research (Vol. 16).
Darwis, D., Siskawati, N., & Abidin, Z. (2021). Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional. Jurnal TEKNO KOMPAK, 15(1), 131–145.
Han, H., Wang, W.-Y., & Mao, B.-H. (2005). LNCS 3644 - Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In LNCS (Vol. 3644).
Hasibuan, M. S., & Serdano, A. (2022). Analisis Sentimen Kebijakan Pembelajaran Tatap Muka Menggunakan Support Vector Machine dan Naive Bayes. JRST (Jurnal Riset Sains Dan Teknologi), 6(2), 199. https://doi.org/10.30595/jrst.v6i2.15145
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning:Trends, perspectives, and prospects. Science, 349(6245), 253–255. https://doi.org/10.1126/science.aac4520
Joshi, M., Das, D., Gimpel, K., & A. Smith, N. (2010). N10-1038. Human Language Technologies, 293–296.
Liu, B. (2020). Sentiment Analysis Essentials Sentiment Analysis: Mining Opinions, Sentiments, and Emotions.
Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113. https://doi.org/10.1016/j.asej.2014.04.011
Powers, D. M. W., & Ailab. (n.d.). EVALUATION: FROM PRECISION, RECALL AND F-MEASURE TO ROC, INFORMEDNESS, MARKEDNESS & CORRELATION.
Rennie, J. D. M., Shih, L., Teevan, J., & Karger, D. R. (n.d.). Tackling the Poor Assumptions of Naive Bayes Text Classifiers.
Robertson, S. (2004). Understanding inverse document frequency: On theoretical arguments for IDF. Journal of Documentation, 60(5), 503–520. https://doi.org/10.1108/00220410410560582
Sailunaz, K., & Alhajj, R. (2019). Emotion and sentiment analysis from Twitter text. Journal of Computational Science, 36. https://doi.org/10.1016/j.jocs.2019.05.009
Ullah, A., Zhang, Q., & Ahmed, M. (2021). The influence of intellectual property rights protection on contribution efforts of participants in online crowdsourcing contests. Computers in Human Behavior, 123. https://doi.org/10.1016/j.chb.2021.106869
Yadav, A., & Vishwakarma, D. K. (2020). Sentiment analysis using deep learning architectures: a review. Artificial Intelligence Review, 53(6), 4335–4385. https://doi.org/10.1007/s10462-019-09794-5

Published

2024-11-19

How to Cite

Cahya, L. D., & Wibowo, A. P. (2024). SENTIMENT ANALYSIS ON ARTIFICIAL INTELLIGENCE TECHNOLOGY USING NAIVE BAYES CLASSIFIER. Inovasi Pembangunan : Jurnal Kelitbangan, 12(3). https://doi.org/10.35450/jip.v12i03.637